Dossier d’Enquête Préalable à la Déclaration d’Utilité Publique

Pièce E : Caractéristiques principales des ouvrages les plus importants
I. GENIE CIVIL ET EQUIPEMENTS DES OUVRAGES SOUTERRAINS ..........181

I.I  Introduction .........................................................182

I.II Situation et description de la section en ouvrage ..................183

I.III Contexte physique ....................................................184

I.IV Conception du tunnel vis-à-vis des caractéristiques du milieu souterrain 185

I.IV.1 La prise en compte des risques liés au gonflement de l’argile verte .......... 185

I.IV.2 La prise en compte des risques de drainage et de mise en communication des nappes d’eau souterraines ......................................................... 185

I.IV.3 Les ouvrages de type étanché ........................................185

I.V Conception et méthode de réalisation de la section en ouvrage ..........186

I.V.1 Les tremies d’accès ......................................................187

I.V.2 Les tranchées couvertes ................................................188

I.V.3 Le tunnel ........................................................................188

I.V.4 La station observatoire ....................................................189

I.V.5 Traitement prévu des écoulements d’eau en phase « chantier » .......... 190

I.V.6 Traitement prévu des eaux en phase d’exploitation .......................191

I.VI Principaux équipements de la section souterraine ......................192

I.VI.1 Les équipements nécessaires à l’exploitation commerciale de la station par niveau 192

I.VI.2 Les équipements d’accès ..............................................193

I.VI.3 L’éclairage en station ....................................................193

I.VI.4 L’éclairage en tunnel ......................................................194

I.VI.5 La signalétique .............................................................194

I.VI.6 Equipements de sécurité de la station ....................................194

I.VI.7 Le système de ventilation et de désenfumage .............................195

I.VI.8 Equipements d’intervention de secours ..................................195

I.VI.9 La supervision du tunnel ...................................................195

I.VI.10 L’alimentation en énergie basse-tension ................................195

I.VI.11 La signalisation ferroviaire ..............................................196

TABLE DES ILLUSTRATIONS .......................................................197
I. GENIE CIVIL ET EQUIPEMENTS DES OUVRAGES SOUTERRAINS
I.I INTRODUCTION

Le projet de prolongement de la ligne de Tramway T7 reliant Athis-Mons au centre-ville de Juvisy-sur-Orge comporte une section en ouvrages, qui comprend deux ouvrages d'accès, une station souterraine et un tunnel.

Ce sont les seuls ouvrages existant le long du tracé du projet.
I.II  SITUATION ET DESCRIPTION DE LA SECTION EN OUVRAGE

Entre la RN7 et le centre-ville de Juvisy-sur-Orge, les contraintes topographiques très prononcées (dénivelé de 52m) et urbaines ne permettent pas d’insérer le tramway en surface.

Le passage en tunnel sous le Parc de la Mairie s’avère nécessaire pour :
- limiter l’impact foncier et urbain (acquisitions foncières, modification du plan de circulation ;
- répondre aux spécificités techniques du secteur (dénivelé important, rues étroites et sinuose) ;
- et garantir la qualité de service du tramway et les meilleurs temps de parcours.

Le tracé et la pente du tunnel peuvent être adaptés aux capacités techniques du tramway, indépendamment de la configuration du terrain naturel.

Le tunnel sera creusé de manière traditionnelle (à la pelle hydraulique) principalement sous le parc de la mairie.

Nous appellerons section en ouvrage la partie du tracé comprenant les deux trémies d’accès, les deux tranchées couvertes et le tunnel. Elle est longue de 930 m.

La section souterraine du projet comprend le tunnel et les deux tranchées couvertes en extrémité. Elle est longue de 670 m.

La section en tunnel comprend le tunnel proprement dit. Cette section est entièrement réalisée en souterrain, les travaux n’ayant aucun impact en surface. Elle est longue de 310 m.

La section en ouvrages se décompose de la manière suivante :
- la première trémie (tranchée ouverte) d’accès au tunnel est située dans l’axe de la RN7. Elle débute entre les rues Charles Legendre et Claude Bernard avec une pente de 7% sur une longueur de 160 m. Elle atteint ainsi une profondeur de 8m par rapport au terrain naturel ;
- le tramway s’insère ensuite en tranchée couverte au niveau de la rue Merlet et ce durant 220 m environ, jusqu’à la station Observatoire située à 17 m de profondeur par rapport au terrain naturel ;
- la station Observatoire mesure environ 60 m de long et 25 m de large ;
- au sud de la station, commence la partie creusée en tunnel sous le parc de la Mairie, longue de 310 m. Elle passe par une profondeur maximum de 26 m pour aboutir à une nouvelle tranchée couverte, à -12,5 m de la surface ;
- la deuxième tranchée couverte s’étend sur 100 m sous le parc de la mairie et débouche sur la seconde trémie de la section souterraine le long de la rue Piver ;

• la seconde trémie longue la rue Piver sur environ 50 m. Le tramway s’insère ensuite à niveau dans le corps de la voirie.

1 – La section en ouvrages du Tramway T7 Athis - Juvisy
I.III CONTEXTE PHYSIQUE

La campagne de reconnaissance géotechnique réalisée en 2010 par GINGER (groupe d’ingénierie) a permis de confirmer la connaissance des sous-sols et de déterminer la faisabilité du tunnel.

Le sous-sol est constitué, principalement, de l’enchaînement de couches suivantes :

- des calcaires de Brie (poreuses et perméables) ;
- des Marnes Vertes, formation imperméable ;
- des Marnes Supra-gypseuses (Marnes de Pantin) et des calcaires de Champigny, couche poreuse et permeable.

Le milieu physique est caractérisé par la présence de deux nappes d’eaux souterraines :

- la nappe supérieure se situe dans la couche de calcaires de Brie (en orange sur le schéma ci-contre). Elle repose sur la formation imperméable de Marnes Vertes (en vert sur le schéma ci-contre). La nappe est en mouvement vers le sud-est, en direction des coteaux de l’Orge et de la Seine ;
- la nappe profonde utilisée pour son eau potable est située dans la couche perméable de marnes et de calcaires de Champigny (en bleu sur le schéma ci-contre).

Ces deux nappes sont séparées par la couche imperméable de Marnes Vertes.

Le schéma ci-dessous présente la nature hydro-géologique des couches souterraines traversées par le projet T7 entre la trémie RN7 et la sortie rue Piver.

A partir de la RN7, l’ouvrage du tramway s’enfonce dans la couche des calcaires de Brie et dans la nappe supérieure.

Il traverse ensuite sur un linéaire important un couche de marne verte imperméable jusqu’au point d’émergence rue Piver.

Nota :
Les profils en long (coupes longitudinales) établis à partir des sondages réalisés pour les études préliminaires, mettent en evidence des variations de l’épaisseur des différentes formations, ce qui représente un aléa pouvant nécessiter, lors du creusement du tunnel, des adaptations frequentes de la méthode de réalisation.

Des campagnes de reconnaissances complémentaires seront réalisées dans les phases d’études détaillées afin de connaitre plus précisément les caractéristiques du sous-sol et les modalités d’écoulement des sources.
I.IV CONCEPTION DU TUNNEL VIS-A-VIS DES CARACTERISTIQUES DU MILIEU SOUTERRAIN

I.IV.1 La prise en compte des risques liés au gonflement de l’argile verte

Les résultats de sondages et les analyses du milieu physique effectués dans le cadre des études ont mis en évidence les difficultés potentielles engendrées par la traversée de la couche de l’Argile Verte dite « de Romainville » (Marnes Vertes), sur les 2/3 de la longueur de l’ouvrage.

L’Argile Verte est une argile qui gonfle avec un apport d’eau et se rétracte par dessèchement, à l’image d’une éponge.

La conception du tunnel doit donc permettre de :

- résister à l’éventuelle pression de gonflement des argiles vertes pour éviter tout risque de soulèvement de la future plateforme du tramway ;
- limiter le risque de gonflement ou de retrait des argiles à long terme en empêchant les apports d’eau à travers le tunnel.

Le tunnel est conçu comme une structure fermée, comportant d’une part un radier\(^1\) stable à la sous-pression, et se comportant, d’autre part, comme un ensemble étanche.

I.IV.2 La prise en compte des risques de drainage et de mise en communication des nappes d’eau souterraines

La conception de type « ouvrage étanche » (cf. ci-contre) ainsi que la nature peu perméable de la couche d’Argile Verte traversée, permet de s’affranchir du risque de drainage et de mise en communication des deux nappes entre lesquelles s’inscrit l’ouvrage du tramway.

De plus, cette conception limite fortement les besoins de maintenance et les débits à rejeter pour l’assainissement du tunnel.

I.IV.3 Les ouvrages de type étanche

La conception retenue du tunnel, de la tranchée couverte de la RN7 et de la station de l’Observatoire est de type « ouvrage étanche ».

De nombreux tunnels ferroviaires ou routiers sont de type « ouvrages drainants ».

L’eau souterraine est dans ce cas drainée en voûte par une membrane étanche puis s’écoule dans un caniveau ou un tuyau jusqu’à l’air libre (figure ci-dessous à gauche).

Pour les ouvrages étanches (photo ci-dessous à droite), en revanche, l’eau de la nappe reste à l’extérieur du tunnel.

\(^1\) Plateforme (en bois, en maçonnerie, en béton), revêtement imperméable protégeant la base d’une construction contre l’érosion des eaux, ou lui servant de fondation.
I.V CONCEPTION ET MÉTHODE DE RÉALISATION DE LA SECTION EN OUVRAGE

La réalisation des ouvrages souterrains nécessite des travaux qui peuvent avoir des impacts en surface, ou qui s’effectuent intégralement en souterrain, et sont donc sans impact en surface.

Le creusement du tunnel en souterrain nécessite une couverture suffisante au-dessus du tunnel pour garantir la stabilité des sols.

Compte tenu de la topographie du site et des caractéristiques admissibles de pente du tramway, la profondeur pour laquelle cette couverture est atteinte se trouve au niveau du bas de l’ouvrage de la station Observatoire.

La longueur de la section en tunnel est déterminée par la couverture disponible à tout moment au-dessus du tunnel.

Lorsque le creusement ne peut être réalisé en tunnel, une tranchée est réalisée à ciel ouvert ou en cut-and-cover2.

Lorsque la hauteur disponible au fond de cette tranchée est supérieure au gabarit du tramway, la tranchée peut être couverte et les fonctionnalités en surface (circulation, espaces verts, etc.) se retrouver ainsi rétablies dans des délais réduits si besoin (travaux d’excavation et de génie civil réalisés en taupe).

Lorsque la hauteur disponible à partir du fond de la tranchée est inférieure au gabarit du tramway, la tranchée est ouverte. On parle alors de trémie.

Les méthodologies constructives des trois types d’ouvrages réalisés dans le cadre du projet T7 Athis – Juvisy sont décrites de façon plus détaillée dans la suite de ce chapitre.

\[\text{Source: InterAtlas – couverture départementale photographique (2008), exploitations complémentaires.}\]

---

2 La méthode constructive "Cut-and-cover" est une méthode classique de construction des tunnels peu profonds. Une tranchée est creusée et couverte avec un système de soutien suffisamment solide pour supporter la charge de ce qui se trouve au-dessus.
I.V.1 **Les trémies d'accès**

Une trémie est un ouvrage d'accès à un souterrain.

Les deux trémies du projet sont situées aux deux extrémités du tunnel sur la RN7 et le long de la rue Piver assurent la liaison entre la section souterraine et la section en surface.

L'ouvrage qui les constitue est un **cadre ouvert** en béton armé.

Les travaux de construction des trémies sont réalisés à ciel ouvert. Des pieux sont insérés dans le sol (poteaux moulés, profils métalliques, etc.), puis on vient creuser celui-ci par couche pour compléter le soutènement par un blindage du talus dégagé entre les pieux verticaux. Ces parois sont dites berlinoises. Elles sont ensuite butonnées ou tirantées.

Les tirants et les butons permettent de reprendre les efforts sur les parois berlinoises pour éviter l'effondrement de ces dernières.

Un tirant est une longue tige vissée dans la paroi et le terrain qui travaille en traction.

Un buton est un étai qui travaille en compression.

Une fois la tranchée creusée, le cadre ouvert en U en béton est coulé sur place ou préfabriqué à l'intérieur des parois berlinoises.

---

6 – Trémie d'accès en souterrain - cadre ouvert en U préfabriqué

7 – Exemple de travaux d'ouvrage en parois berlinoises tirantées et butonnées (Ouvrages Parc de la Mairie – Piver)

8 – Exemple de travaux d'ouvrage en parois berlinoises avec butons inclinés (Ouvrages Parc de la Mairie – Piver)
I.V.2 Les tranchées couvertes

La première tranchée couverte côté RN7 est située entre la fin de la trémie localisée au niveau de la rue Merlet et la station Observatoire.

La seconde tranchée couverte est située au pied du parc de la Mairie de Juvisy-sur-Orge, en amont de la trémie de la rue Piver.

Il s'agit d'ouvrages de type cadre fermé en béton armé.

Elles sont réalisées respectivement :
- en parois moulées et réalisées, en cut-and-cover de manière à minimiser la gêne sur la circulation automobile en surface (secteur RN7) ;
- et sous forme d'ouvrage cadre en béton à l'intérieur d'un soutènement provisoire en parois berlinoises ; ce dispositif est mieux adapté à la configuration topographique du secteur « Piver – parc de la Mairie » (talus).

Les tranchées seront réalisées l’une après l’autre pour maintenir la circulation au maximum.

Pour les parois moulées, une fois celles-ci réalisées on construit la dalle pour pouvoir continuer l’excavation tout en maintenant la circulation. Cette solution dite en « taupe » permet de limiter l’impact travaux mais nécessite des accès pour les engins de chantier.

I.V.3 Le tunnel

Le tunnel commence en aval de la station Observatoire.

C’est un ouvrage creusé de manière traditionnelle (à la pelle hydraulique) avec une section dite « fer à cheval ». Il est long de 310 m environ et s’achève dans le parc de la mairie de Juvisy-sur-Orge. La méthode de creusement en tunnel permet de préserver le parc de la Mairie.

Le tunnel sera creusé depuis l’aval (côté rue Piver), en attaque montante, pour faciliter la récupération des eaux qui s’écouleraient du fait des travaux de creusement du tunnel.

On remarque sur cette image la section dite « fer à cheval, avec par ailleurs une voûte inversée en bas de la plateforme, qui permet au tunnel de résister aux gonflements du terrain.

La stabilité des sols dépend aussi du front de taille, en d’autre termes la face du tunnel que l’on vient creuser. Celle-ci peut être sujette à un affaissement du terrain. Afin de palier à ce problème, il est possible de réaliser un soutènement du front de taille. Pour ce faire, des boulons destructibles en fibre de verre seront insérés dans le front de taille. Ces inclusions améliorent sensiblement les caractéristiques mécaniques du milieu dans lequel ils sont placés.

Toutefois, au vu des caractéristiques mécaniques de l’argile verte, l’utilisation de ces boulons destructibles ne sera probablement pas nécessaire.
I.V.4  La station observatoire

La station Observatoire est un ouvrage souterrain d’environ 60 m par 23 m par 17m. Des butons permettront de maintenir les parois latérales de la station.

Ses accès sont reportés latéralement dans des extensions du parallélépipède principal, afin de dégager un volume visible généreux. Les systèmes d’accès (ascenseurs, escalators) ne se situent pas au-dessus des voies, rendant leur maintenance plus aisée. La simplicité du volume principal et les dessous d’escaliers cloisonnés pour abriter les locaux techniques concourent à faciliter l’entretien des locaux : leur sous-face ne constitue pas une surface accessible et reste propre.

La station souterraine sera réalisée de la manière suivante, et présentée dans le schéma ci-contre :

- Après la déviation des réseaux urbains, le contour de la station sera réalisé par la méthode des parois moulées (Phase 1 étape 1). La dalle de couverture est ensuite coulée, en appui sur les parois moulées (Phase 1 étape 3). Les fonctionnalités en surface sont ainsi en partie restituées.

- L’excavation est ensuite réalisée sous la dalle, à partir des ouvertures dans la dalle (cages d’escalier, fosses d’ascenseurs, etc.). Le volume total de terrain à excaver pour la section souterraine est évalué à 100 000 m$^3$ (Phase 2 étapes 2, 4, 6). Les déblais seront évacués par camion (le nombre quotidien de rotations est estimé entre 20 à 25 camions en moyenne sur chacun des axes d’évacuation à savoir : Piver et RN7). Les horaires de chantier seront adaptés en respect du voisinage et des contraintes de circulation du secteur.

Selon la qualité des terres et la compatibilité avec le planning des travaux, les possibilités de réemploi seront étudiées.

- Les aménagements intérieurs (second œuvre) sont réalisés in fine (Phase 4).

Il n’est pas nécessaire de construire un bouchon de fond de fouille empêchant la remontée des eaux de la nappe, du fait des propriétés des Marnes Vertes.

L’eau présente lors de l’excavation de la station sera pompée et traitée. Le chapitre suivant développe ce sujet.
I.V.5 Traitements prévus des écoulements d'eau en phase « chantier »

En phase définitive, du fait de sa construction étanche, la section en ouvrage n’aura aucun impact sur les nappes. Cependant, une vigilance accrue sera nécessaire en phase travaux afin de ne pas perturber le système hydrogéologique, particulièrement pour les ouvrages interceptant la nappe souterraine (tranchées couvertes et tunnel).

En effet, lors des travaux des tranchées et des trémies, de l’eau sera emprisonnée entre les parois berlinoises ou moulées. L’eau piégée sera pompée pour permettre les travaux à sec. Une quantité limitée d’eau sera donc prélevée pendant le chantier ; les arrivées d’eau éventuelles seront peu abondantes.

Pour le tunnel, les études déjà menées permettent d’estimer que les eaux souterraines drainées par le tunnel seront peu abondantes du fait de l’imperméabilité du sol (marnes vertes) et de sa localisation.

En effet, le tunnel est creusé dans une formation imperméable qui est située entre deux nappes souterraines. Ses parois seront étanches grâce à une membrane plastique au-dessus de la voute du tunnel (photo ci-dessous).

De plus, un radier provisoire en béton sera réalisé au fur et à mesure du creusement et permettra d’éviter l’infiltration éventuelle des eaux du chantier (lavage, bétonnage etc.) dans les argiles vertes.

Deux bassins de traitement et de décantation des eaux provisoires (utiles uniquement en phase travaux) accueilleront donc les écoulements résiduels libérés lors du creusement du tunnel ainsi que les eaux de chantier (eaux polluées) et les eaux pluviales tombant sur le chantier (les eaux de ruissellement ne tombant pas directement sur le chantier devront être détournées et envoyées dans le réseau d’eaux pluviales d’assainissement).

Avant d’être rejetées dans le réseau d’assainissement, les eaux recueillies dans le bassin seront traitées selon les étapes suivantes : décantation, déshuilage et neutralisation.

Un premier bassin sera implanté dans les emprises travaux sur la RN7 à la sortie du chantier (probablement à l’extrémité du chantier sur la RN7, vers la rue Merlet ou Legendre). Ce bassin sera supprimé dès la fin de travaux de la station souterraine, de la tranchée couverte et de la trémie sur la RN7.

Un autre bassin sera implanté au bout des emprises travaux du côté de la rue Piver (probablement au pied de l’Hôpital). Ce type de bassin peut contenir généralement 20 à 30 m³ d’eau avec une emprise au sol d’environ 10m de long sur 3m de large.

Source : Etandard
I.V.6 Traitements prévu des eaux en phase d’exploitation

En phase définitive, comme précisé précédemment, le tunnel n’aura aucun impact sur les nappes. Cependant, des eaux de pluie pénètreront inévitablement par les entrées du tunnel et de la station Observatoire.

Pour pallier à ces arrivées d’eau à l’intérieur du tunnel, la plateforme du tunnel sera réalisée de manière à évacuer les eaux pluviales, et ce à deux niveaux :

- en surface sur la plateforme : l’eau ruisselle sur la plateforme sans s’infiltrer et est évacuée vers des caniveaux à fente situés sur les bords du tunnel via des pentes minimales d’aménagement ;
- dans la gorge du rail puis dans des boîtes à eau ;

Les boîtes à eau permettront l’évacuation des eaux vers des regards de visite, situés tous les 40 m environ. Ces regards seront reliés à un puisard ou directement au réseau de collecte des eaux pluviales du Syndicat mixte de la Vallée Orge Aval (SIVOA).

Sur la partie supérieure du tunnel, comprise entre la première trémie et la station Observatoire, l’eau sera récupérée dans un puisard installé en station, où une pompe renverra l’eau vers le réseau de collecte des eaux pluviales du SIVOA.

Sur la partie inférieure (après la station Observatoire), la pente du tunnel favorise l’écoulement naturel des eaux et les amènera par gravité au réseau de collecte des eaux pluviales du SIVOA.
I.VI. PRINCIPAUX EQUIPEMENTS DE LA SECTION SOUTERRAINE

Rappel :
Pour des raisons de sécurité d’exploitation du tramway, le tunnel sera accessible de manière restreinte aux véhicules de secours et maintenance et pour l’évacuation des voyageurs en cas d’incident.
Les cycles seront interdits d’accès ainsi que les véhicules routiers ou les piétons en dehors des situations présentées ci-dessus.
Des dispositifs anti-intrusion seront mis en place aux entrées du tunnel afin de garantir la sécurité à l’intérieur du tunnel (accès piétons et véhicules restreint aux secours et personnel de maintenance).

I.VI.1 Les équipements nécessaires à l’exploitation commerciale de la station par niveau

I.VI.1.1 NIVEAU QUAI R-2
La station souterraine sera équipée de quais latéraux.
La largeur des quais sera de 4 m, hors escaliers. Les rames du tramway auront une longueur de 32,70 m mais les quais sont volontairement dimensionnés pour des rames de 43 m, par mesure conservatoire.
Le mobilier de confort, de sécurité et de signalétique est susceptible de faire l’objet d’un design personnel, propre à la station Observatoire, mettant en valeur son identité, ou de conserver le mobilier utilisé pour les stations en surface du T7.
D’une manière plus générale, le mobilier ainsi que les équipements et appareils utilisés dans la station feront l’objet d’une intégration architecturale afin de ne pas constituer d’obstacle au déplacement ou d’émergence gênant l’entretien.
Les éléments à quai seront identiques aux éléments des stations de surface. On trouvera entre autres :
- des plans de ligne et d’ensemble du réseau ;
- des plans de quartier ;
- une borne d’informations voyageurs sera installée sur chaque quai. Elle indiquera le temps d’attente avant le prochain tramway, ainsi que sa direction ;
- des réservations pour l’installation de bornes de validation en entrée de quai.
Sur les quais et au droit des équipements spécifiques (caméras, bornes d’informations voyageurs, interphones, etc.) des regards devront être implantés pour assurer la liaison entre les fourreaux pour câbles de quai et les fourreaux cheminant en poteau ou derrière des murs de décoration.

I.VI.1.2 NIVEAU INTERMEDIAIRE – MEZZANINE R-1
La mezzanine accueillera différents équipements d’exploitation.
Deux appareils de vente (APV) pour l’achat des titres de transports sont prévus.
L’implantation d’autres locaux sera précisée au stade des études ultérieures.
Elle sera également équipée de trois accès ascenseurs afin de garantir une accessibilité à chaque quai et au parvis de la station.
La station ne sera pas équipée de ligne de contrôle des titres de transport, son fonctionnement restant semblable à celui des stations tramway de surface.
I.VI.1.3 NIVEAU PARVIS DE L’OBSERVATOIRE

La sortie principale sur le parvis Observatoire pourra être couverte par un édicule de protection ou un auvent formant un signal. Celui-ci sera soumis à l’Architecte des Bâtiments de France étant donné la proximité de l’Observatoire Camille Flammarion.

La sortie secondaire pourra être traitée en trémie donnant sur l’espace public, sans édicule. Si des appareils de ventilation ou de désenfumage étaient nécessaires sur cette sortie secondaire, ils pourraient être intégrés à l’entourage de la trémie formant garde-corps.

Les sorties feront l’objet d’une mise en lumière particulière pour assurer le confort des usagers, procurer un sentiment de sécurité et assurer leur fonction de signal.

I.VI.2 Les équipements d’accès

L’accès à la station Observatoire pour les voyageurs sera assuré par des escalators, des escaliers et des ascenseurs pour les personnes à mobilité réduite (PMR).

La liaison « quai – mezzanine » sera assurée pour chaque quai par :

- 2 escaliers fixes ;
- 2 escaliers mécaniques ;
- 1 ascenseur accessible PMR.

La liaison « mezzanine – surface » sera assurée par :

- 1 escalier fixe ;
- 1 escalier mécanique dans le sens de la montée ;
- 2 escaliers fixes servant uniquement dans le sens « sortie » de la station (sortie secondaire) ;
- 1 ascenseur accessible PMR.

Afin d’orienter les voyageurs vers le bon quai, des panneaux indiquant la direction et les arrêts desservis doivent être implantés, à l’image des panneaux que l’on peut trouver dans le réseau métropolitain.

Un dispositif adapté aux personnes malvoyantes ou aveugle devra également être installé.

Pour le personnel de maintenance et les secours, des accès par les entrées du tunnel, utilisables uniquement par les personnes autorisées, seront prévus.

I.VI.3 L’éclairage en station

Pour des raisons de confort, de sécurité et d’économie durable, l’éclairement doit être assumé au maximum par la lumière naturelle.

L’éclairage artificiel pourra être d’intensité variable afin d’ajuster la consommation au strict besoin et notamment lorsque la lumière naturelle éclaire la station ou aux heures de fermeture.

Les objectifs des dispositifs d’éclairage sont :
- d’assurer une circulation facile,
- de permettre l’évacuation sûre et facile du public,
- de mettre en éclairage les zones à risque pour la sécurité des usagers,
- mettre en valeur l’architecture et l’identité de la station.

L’équipement de la gare souterraine aura comme composition :

- Un « système d’éclairage normal » : éclairage qui est alimenté par la source normale.
- Un « éclairage de sécurité » : éclairage qui est alimenté par une source de sécurité en cas de disparition de la source normale.

Image non contractuelle, représentation indicative de l’insertion du tramway T7 Athis-Juvisy
Les locaux et dégagements, les objets faisant obstacle à la circulation, les marches, les portes et sorties, les indications de balisage devront être éclairés, conformément à l’article GA 35.

L’éclairage de sécurité doit être à l’état de veille pendant l’exploitation de l’établissement. Il est mis ou maintenu en service en cas de défaillance de l’éclairage normal/remplacement.

I.VI.4 L’éclairage en tunnel.

L’éclairage déployé sera basé sur des sources à basse voir très basse consommation, dans le cas de l’éclairage de cheminement et de balisage.

Dans le cas de l’éclairage de cheminement, les foyers lumineux seront disposés de façon à obtenir le niveau d’éclairement minimum nécessaire principalement à la fonction d’évacuation des usagers.

L’éclairage de signalisation et le balisage doit quant à lui assurer la visibilité des points singuliers tel que les prises pompier, les prises d’eau (colonne sèche), les téléphones et la signalétique de repérage des sorties. Cet éclairage devra être permanent.

I.VI.5 La signalétique

L’éclairage de signalisation et de balisage complète l’éclairage de cheminement. Il est de type permanent et est alimenté conformément aux dispositions du chapitre I.VI.10 de cette pièce. Il s’applique :

- aux prises d’eau traitées;
- aux indications de repérages des issues placées à 100 mètres d’intervalle pour indiquer la distance des issues dans les deux sens. Les issues de secours et les accès pompier éventuellement disposés dans le tunnel font l’objet d’une signalétique adaptée.

17 – Exemples de signalisation à l’intérieur du tunnel

I.VI.6 Equipements de sécurité de la station

La station sera équipée d’un système de vidéo surveillance pilotée depuis le poste de commande localisé (PCL) situé dans le SMR (à Vitry).

Les positions des caméras seront telles que l’architecture et les mobiliers de la gare n’interféreront pas avec les champs de vision, évitant les angles morts propices aux usages illicites.

Des interphones seront installés, aux extrémités et milieu de quai.

Un système de sonorisation en salle et sur les quais permet au PCL de communiquer des messages prénregistrés et spontanés. Le système de sonorisation devra répondre aux normes NFS 61-230 à 61-240 concernant les Systèmes de Sécurité Incendie (S-S.I).
I.VI.7  Le système de ventilation et de désenfumage

I.VI.7.1  VENTILATION DE CONFORT

Les ouvrages souterrains seront ventilés pour le confort et la sécurité d'exploitation. En exploitation courante, la ventilation de confort (en extraction ou/et en soufflage) pourra être enclenchée lorsque :

- la température du tunnel sera trop importante (seuils de température paramétrables au niveau de la Gestion Technique Centralisée) ;
- la température extérieure sera inférieure ou proche de la température tunnel (écart paramétrables au niveau de la Gestion Technique Centralisée).

Les ouvrages seront équipés de plusieurs capteurs de température. Le traitement de ces données permettra d'obtenir une température moyenne dans le tunnel. Ils seront ventilés en utilisant les accélérateurs (ou/et ventilateurs) de la station Observatoire.

I.VI.7.2  INCENDIE

Les installations souterraines seront équipées de manière à assurer la sécurité incendie, notamment par la prise des mesures suivantes :

- un système de désenfumage, qui permettra d'assurer la non-propagation des fumées et leur extraction ;
- un dimensionnement des installations (plateforme, mezzanine, etc.) adapté à l'évacuation des usagers, dont les personnes à mobilité réduite (PMR), en accord avec la réglementation en vigueur.

I.VI.8  Equipements d’intervention de secours

En ce qui concerne les équipements d’intervention et de secours, une concertation avec le Service Départemental d’Incendie et de Secours (SDIS) sera à réaliser dans la phase d’étude d’Avant-Projet pour valider ou compléter les installations prévues à ce stade, à savoir :

- des accès de secours ;
- de l’alimentation en eau pour les incendies ;
- des prises électriques ;
- des communications pour les services de secours ;
- des équipements mécaniques.

I.VI.9  La supervision du tunnel.

La gestion technique des équipements du tunnel se fera dans les locaux techniques de la station « Observatoire » par la mise en œuvre de dispositifs d'acquisition (automate redondant, cartes d’entrées et de sorties, etc.) permettant de connecter les équipements à contrôler à la supervision du poste de commande localisé (PCL), au travers du réseau de transmission sol-sol :

- commande et contrôle de l’éclairage en tunnel ;
- commande et contrôle des équipements en tunnel (ventilation, etc.) ;
- surveillance vidéo ;
- etc.

I.VI.10  L’alimentation en énergie basse-tension

L’alimentation électrique de la station souterraine sera réalisée grâce aux deux postes de redressement (PR) encadrant le tunnel. Ces derniers alimentent en haute tension A (20Kv) le poste électrique de la station souterraine.

Concernant les dispositifs de sécurité, on considère les équipements suivants : éclairage d’évacuation, désenfumage, prises électriques, communications ; ils doivent disposer d’une alimentation basse-tension de sécurité.

Chaque équipement ayant une fonction de sécurité doit être alimenté de sorte que la perte de l’une des deux sources basse tension n’entraîne pas la défaillance de la fonctionnalité de l’équipement.

Les dispositifs de sécurité seront mis au point pour garantir le fonctionnement de ces équipements.
I.VI.11 La signalisation ferroviaire

Pour des raisons de sécurité, liées au risque de rattrapage (arrivée d'un tramway au niveau de celui qui le précède), il n'est pas permis que deux rames puissent se suivre dans le tunnel dans le même sens de circulation.

Une information sera fournie aux conducteurs de matériel roulant sur l'état d'occupation de la zone du tunnel vers laquelle il se dirige (à savoir si la zone est déjà occupée ou non par une rame). Pour cela, une signalisation ferroviaire dit « signalisation d'occupation » sera installée.

Lorsqu'une rame se trouve sous une des zones en tunnel (cf. figure ci-dessous), la rame qui suit sera contrainte à l'arrêt au travers d'un feu rouge situé en station lui indiquant que la zone en tunnel en aval est occupée et ce jusqu'à ce que la rame qui la précède soit sortie de la zone.

Ces feux sont implantés dans les deux stations encadrant le tunnel: Pyramide et Maréchal Leclerc.

19 – Zone d'occupation en tunnel
TABLE DES ILLUSTRATIONS
<table>
<thead>
<tr>
<th>N°</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La section en ouvrages du Tramway T7 Athis - Juvisy</td>
<td>183</td>
</tr>
<tr>
<td>2</td>
<td>Localisation de la boîte de la station Observatoire</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Représentation schématique du sous-sol</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>La section en tunnel du projet de tramway T7 Athis - Juvisy</td>
<td>185</td>
</tr>
<tr>
<td>5</td>
<td>La section en ouvrages du projet de tramway T7 Athis - Juvisy</td>
<td>186</td>
</tr>
<tr>
<td>6</td>
<td>Trémie d’accès en souterrain - cadre ouvert en U préfabriqué</td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>Exemple de travaux d’ouvrage en parois berlinoises tirantées et butonnées (Ouvrages Parc de la Mairie – Piver)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Exemple de travaux d’ouvrage en parois berlinoises avec butons inclinés (Ouvrages Parc de la Mairie – Piver)</td>
<td>187</td>
</tr>
<tr>
<td>9</td>
<td>Coupe de principe du tunnel sous le Parc de la Mairie de Juvisy – Tranchée couverte</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>Exemple de travaux d’ouvrage en parois moulées (ouvrages RN7–Observatoire)</td>
<td>188</td>
</tr>
<tr>
<td>11</td>
<td>Coupe de principe du tunnel sous le parc de la Mairie</td>
<td>188</td>
</tr>
<tr>
<td>12</td>
<td>Front de taille d’un tunnel en méthode séquentielle</td>
<td>188</td>
</tr>
<tr>
<td>13</td>
<td>Schéma de phasage de construction de la station souterraine Observatoire (méthode cut and cover)</td>
<td>189</td>
</tr>
<tr>
<td>14</td>
<td>Membrane plastique permettant l’étanchéité du tunnel</td>
<td>190</td>
</tr>
<tr>
<td>15</td>
<td>Principe d’aménagement de la station Observatoire</td>
<td>192</td>
</tr>
<tr>
<td>16</td>
<td>Perspective d’aménagement de la station l’Observatoire</td>
<td>193</td>
</tr>
<tr>
<td>17</td>
<td>Principe d’implantation des éclairages</td>
<td>194</td>
</tr>
<tr>
<td>18</td>
<td>Exemples de signalisation à l’intérieur du tunnel</td>
<td>194</td>
</tr>
<tr>
<td>19</td>
<td>Zone d’occupation en tunnel</td>
<td>196</td>
</tr>
</tbody>
</table>